Probabilistic Networks and Fuzzy Clustering as Generalizations of Naive Bayes Classifiers

نویسندگان

  • Christian Borgelt
  • Heiko Timm
  • Rudolf Kruse
چکیده

Although at first sight probabilistic networks and fuzzy clustering seem to be disparate areas of research, a closer look reveals that they can both be seen as generalizations of naive Bayes classifiers. If all attributes are numeric (except the class attribute, of course), naive Bayes classifiers often assume an axis-parallel multidimensional normal distribution for each class as the underlying model. Probabilistic networks remove the requirement that the distributions must be axis-parallel by taking the covariance of the attributes into account, where this is necessary. Fuzzy clustering is an unsupervised method that tries to find general or axis-parallel distributions to cluster the data. Although it does not take into account the class information, it can be used to improve the result of naive Bayes classifiers and probabilistic networks by removing the restriction that there can be only one distribution per class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Fuzzy Clustering to Improve Naive Bayes Classifiers and Probabilistic Networks

Although probabilistic networks and fuzzy clustering may seem to be disparate areas of research, they can both be seen as generalizations of naive Bayes classifiers. If all descriptive attributes are numeric, naive Bayes classifiers often assume an axis-parallel multidimensional normal distribution for each class. Probabilistic networks remove the requirement that the distributions must be axis...

متن کامل

A Naive Bayes Style Possibilistic Classifier

Naive Bayes classifiers can be seen as special probabilistic networks with a star-like structure. They can easily be induced from a dataset of sample cases. However, as most probabilistic approaches, they run into problems, if imprecise (i.e, set-valued) information in the data to learn from has to be taken into account. An approach to handle uncertain as well imprecise information, which recen...

متن کامل

Bayesian Network Classifiers. An Application to Remote Sensing Image Classification

Different probabilistic models for classification and prediction problems are anlyzed in this article studying their behaviour and capability in data classification. To show the capability of Bayesian Networks to deal with classification problems four types of Bayesian Networks are introduced, a General Bayesian Network, the Naive Bayes, a Bayesian Network Augmented Naive Bayes and the Tree Aug...

متن کامل

Improving Naive Bayes Classifiers Using Neuro-Fuzzy Learning

Naive Bayes classifiers are a well-known and powerful type of classifiers that can easily be induced from a dataset of sample cases. However, the strong conditional independence and distribution assumptions underlying them can sometimes lead to poor classification performance. Another prominent type of classifiers are neuro-fuzzy classification systems, which derive (fuzzy) classifiers from dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001